9-CONIC SECTION

Parabola :

The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line, i.e. $\mathrm{e}=1$ is called a parabola.

Its equation in standard form is $y^{2}=4 a x$
(i) Focus $\mathrm{S}(\mathrm{a}, 0)$
(ii) Equation of directrix ZM is $\mathrm{x}+\mathrm{a}=0$
(iii) Vertex is $\mathrm{O}(0,0)$
(iv) Axis of parabola is $\mathrm{X}^{\prime} \mathrm{OX}$

Some definitions :

Focal distance : The distance of a point on parabola from focus is called focal distance. If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is on the parabola, then focal distance is $x_{1}+a$.
Focal chord : The chord of parabola which passes through focus is called focal chord of parabola.
Latus rectum : The chord of parabola which passes through focus and perpendicular to axis of parabola is called latus rectum of parabola. Its length is $4 a$ and end points are $L(a, 2 a)$ and $L^{\prime}(a,-2 a)$.
Double ordinate : Any chord which is perpendicular to the axis of the parabola is called its double ordinate.

- Equation of tangent at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$y_{1}=2 a\left(x+x_{1}\right)$
and equation of tangent in slope form is
$y=m x+\frac{a}{m}$
Here point of contact is $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
- Equation of normal at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$y-y_{1}=\frac{-y_{1}}{2 a}\left(x-x_{1}\right)$
and equation of normal in slope form is
$y=m x-2 a m-\mathrm{am}^{3}$

Here foot of normal is $\left(\mathrm{am}^{2},-2 \mathrm{am}\right)$

- The line $y=m x+c$ may be tangent to the parabola if $\mathrm{c}=\mathrm{a} / \mathrm{m}$ and may be normal to the parabola if $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$.
- Chord of contact at point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is

$$
\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)
$$

Ellipse :
If a point moves in a plane in such a way that ratio of its distances from a fixed point (focus) and a fixed straight line (directrix) is always less than 1, i.e. e <1 called an ellipse

- Standard equation of an ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
where $b^{2}=a^{2}\left(1-e^{2}\right)$
Now, When $\mathrm{a}>\mathrm{b}$

In this position,
(i) Major axis 2 a and minor axis 2 b
(ii) Foci, $\mathrm{S}^{\prime}(-\mathrm{ae}, 0)$ and $\mathrm{S}(\mathrm{ae}, 0)$ and centre $\mathrm{O}(0,0)$
(iii) Vertices $\mathrm{A}^{\prime}(-\mathrm{a}, 0)$ and $\mathrm{A}(\mathrm{a}, 0)$
(iv) Equation of directries ZM and $\mathrm{Z}^{\prime} \mathrm{M}^{\prime}$ are

$$
\mathrm{x} \pm \frac{\mathrm{a}}{\mathrm{e}}=0, \mathrm{Z}\left(\frac{\mathrm{a}}{\mathrm{e}}, 0\right) \text { and } \mathrm{Z}^{\prime}\left(-\frac{\mathrm{a}}{\mathrm{e}}, 0\right)
$$

(v) Length of latus rectum is $\frac{2 b^{2}}{a}=L^{\prime}=L_{1} L_{1}$,

- The coordinates of points of intersection of line $y=m x+c$ and the ellipse are given by

$$
\left(\frac{-\mathrm{a}^{2} \mathrm{~m}}{\sqrt{\mathrm{~b}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}}}, \frac{\mathrm{~b}^{2}}{\sqrt{\mathrm{~b}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}}}\right)
$$

- Equation of tangents of ellipse in term of m is $y=m x \pm \sqrt{b^{2}+a^{2} m^{2}}$
and the line $y=m x+c$ is a tangent of the ellipse, if $\mathrm{c}= \pm \sqrt{\mathrm{b}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}}$
- The length of chord cuts off by the ellipse from the line $y=m x+c$ is

$$
\frac{2 \mathrm{ab} \sqrt{1+\mathrm{m}^{2}} \cdot \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}}{\mathrm{~b}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}}
$$

- The equation of tangent at any point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the ellipse is

$$
\frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}+\frac{\mathrm{yy}}{\mathrm{y}_{1}} \mathrm{~b}^{2}=1
$$

and at the point $(\mathrm{a} \cos \phi, \mathrm{b} \sin \phi)$ on the ellipse, the tangents is
$\frac{\mathrm{x} \cos \phi}{\mathrm{a}}+\frac{\mathrm{y} \sin \phi}{\mathrm{b}}=1$
Parametric equations of the ellipse are
$x=a \cos \theta$ and $y=b \sin \theta$.

- The equation of normal at any point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the ellipse is

$$
\frac{\left(x-x_{1}\right) a^{2}}{x_{1}}=\frac{\left(y-y_{1}\right) b^{2}}{y_{1}}
$$

also at the point $(\mathrm{a} \cos \phi, \mathrm{b} \sin \phi)$ on the ellipse, the equation of normal is

$$
a x \sec \phi-b y \operatorname{cosec} \phi=a^{2}-b^{2}
$$

- Focal distance of a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ are $\mathrm{a} \pm \mathrm{ex}_{1}$
- Chord of contact at point $\left(x_{1}, y_{1}\right)$ is

$$
\frac{x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1
$$

- Chord whose mid-point is (h, k) is
$\frac{h x}{a^{2}}+\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$ i.e. $T=S_{1}$
- The locus of point of intersection of two perpendicular tangents drawn on the ellipse is $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$. This locus is a circle whose centre is the centre of the ellipse and radius is length of line joining the vertices of major and minor axis. This circle is called "director circle".
- The eccentric angle of point P on the ellipse is made by the major axis with the line PO, where O is centre of the ellipse.
- (a) The sum of the focal distance of any point on an ellipse is equal to the major axis of the ellipse.
(b) The point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies outside, on or inside the ellipse $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ according as $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)>=$ or <0.
- The locus of mid-point of parallel chords of an ellipse is called its diameter and its equation is $y=\frac{-b^{2} x}{a^{2} m}$
- The two diameter of an ellipse each of which bisect the parallel chords of others are called conjugate diameters. Therefore, the two diameters $y=m_{1} x$ and $y=m_{2} x$ will be conjugate diameter if $m_{1} m_{2}=-\frac{b^{2}}{a^{2}}$.

Hyperbola :

When the ratio (defined in parabola and ellipse) is greater than 1 , i.e. e >1, then the conic is said to be hyperbola.
Since the equation of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ differs from that of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in having $-\mathrm{b}^{2}$, most of the results proved for the ellipse are true for the hyperbola, if we replace b^{2} by $-b^{2}$ in their proofs. We therefore, give below the list of corresponding results applicable in case of hyperbola.

- Standard equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $b^{2}=a^{2}\left(e^{2}-1\right)$

In this case,

- Foci are $S(a e, 0)$ and $S^{\prime}(-a e, 0)$.
- Equation of directrices ZM and $\mathrm{Z}^{\prime} \mathrm{M}^{\prime}$ are

$$
\mathrm{x} \mp \frac{\mathrm{a}}{\mathrm{e}}=0, \mathrm{Z}\left(\frac{\mathrm{a}}{\mathrm{e}}, 0\right) \text { and } \mathrm{Z}^{\prime}\left(-\frac{\mathrm{a}}{\mathrm{e}}, 0\right)
$$

- Transverse axis $\mathrm{AA}^{\prime}=2 \mathrm{a}$, conjugate axis $\mathrm{BB}^{\prime}=2 \mathrm{~b}$.
- Centre O $(0,0)$.
- Length of latus rectum $\mathrm{LL}^{\prime}=\mathrm{L}_{1} \mathrm{~L}_{1}{ }^{\prime}=\frac{2 b^{2}}{\mathrm{a}}$
- The difference of focal distance from any point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on hyperbola remains constant and is equal to the length of transverse axis. i.e. $S^{\prime} \mathrm{P} \sim \mathrm{SP}=\left(\mathrm{ex}_{1}+\mathrm{a}\right)-\left(\mathrm{ex}_{1}-\mathrm{a}\right)=2 \mathrm{a}$
- The equation of rectangular hyperbola $x^{2}-y^{2}=a^{2}=b^{2}$ i.e. in standard form of hyperbola put $\mathrm{a}=\mathrm{b}$. Hence $\mathrm{e}=\sqrt{2}$ for rectangular hyperbola. which is passes through centre of the ellipse.

