17-INVERSE TRIGNOMETRY

• Meaning of inverse function :

1.
$$\sin \theta = x \Leftrightarrow \sin^{-1} x = \theta$$

2.
$$\cos \theta = x \Leftrightarrow \cos^{-1} x = \theta$$

3.
$$\tan \theta = x \Leftrightarrow \tan^{-1} x = \theta$$

4.
$$\cot \theta = x \Leftrightarrow \cot^{-1} x = \theta$$

5.
$$\sec \theta = x \Leftrightarrow \sec^{-1} x = \theta$$

6.
$$\csc \theta = x \Leftrightarrow \csc^{-1} x = \theta$$

• Domains and Range of Functions :

Function	Domain	Range
	Domain	runge
sin ⁻¹ x	$-1 \le x \le 1$	π π
		$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
cos ⁻¹ x	$-1 \le x \le 1$	$0 \le \theta \le \pi$
tan ⁻¹ x	$-\infty < x < \infty$	ποπ
	i.e. $x \in R$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$
cosec ⁻¹ x	$x \le -1, x \ge 1$	$\theta \neq 0, -\frac{\pi}{2} \leq \theta < \frac{\pi}{2}$
sec ⁻¹ x	$x \le -1, x \ge 1$	$\theta \neq \frac{\pi}{2}, 0 \leq \theta \leq \pi$
cot ⁻¹ x	$-\infty < x < \infty$	$0 < \theta < \pi$
	i.e. $x \in R$	

• Properties of Inverse Functions :

(a) 1.
$$\sin^{-1}(\sin \theta) = \theta$$
, $\sin(\sin^{-1}x) = x$

2.
$$\cos^{-1}(\cos \theta) = \theta$$
, $\cos(\cos^{-1}x) = x$

3.
$$\tan^{-1}(\tan \theta) = \theta$$
, $\tan(\tan^{-1}x) = x$

4.
$$\cot^{-1}(\cot \theta) = \theta$$
, $\cot(\cot^{-1}x) = x$

5.
$$\sec^{-1}(\sec \theta) = \theta$$
, $\sec(\sec^{-1}x) = x$

6.
$$\csc^{-1}(\csc \theta) = \theta$$
, $\csc(\csc^{-1}x) = x$

(b) 1.
$$\sin^{-1} x = \csc^{-1} (1/x)$$

2.
$$\cos^{-1} x = \sec^{-1}(1/x)$$

3.
$$tan^{-1}x = cot^{-1}(1/x)$$

(c) 1.
$$\sin^{-1}(-x) = -\sin^{-1}x$$

2.
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

3.
$$tan^{-1}(-x) = -tan^{-1}x$$

4.
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

5.
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$

6.
$$\csc^{-1}(-x) = -\csc^{-1}x$$

(d).
$$1 \cdot \sin^{-1}x + \cos^{-1}x = \pi/2$$

2.
$$tan^{-1}x + cot^{-1}x = \pi/2$$

3.
$$\sec^{-1}x + \csc^{-1}x = \pi/2$$

• Formulae for Sum and Difference of Inverse Function –

1.
$$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \frac{x+y}{1-xy} & \text{where } xy < 1 \\ \pi + \tan^{-1} \frac{x+y}{1-xy} & \text{when } xy > 1 \end{cases}$$

2.
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$

3.
$$\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} \left\{ x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2} \right\}$$

4.
$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left\{ xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}$$

5.
$$\cot^{-1} x \pm \cot^{-1} y = \cot^{-1} \left[\frac{xy \mp 1}{y \pm x} \right]$$

6.
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1} \left[\frac{x + y + z - xyz}{1 - xy - yz - zx} \right]$$

• Some Important Results:

1.
$$2 \sin^{-1} x = \sin^{-1} 2x \sqrt{1 - x^2}$$

2.
$$2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$$

3.
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} = \sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2}$$

4.
$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$$

5.
$$3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x)$$

6.
$$3 \tan^{-1} x = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}$$

7.
$$\tan^{-1} \left[\frac{x}{\sqrt{a^2 - x^2}} \right] = \sin^{-1} \left(\frac{x}{a} \right)$$

8.
$$\tan^{-1} \left[\frac{3a^2x - x^3}{a(a^2 - 3x^2)} \right] = 3 \tan^{-1} \left(\frac{x}{a} \right)$$

9.
$$\tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right] = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x^2$$