1-COMPLEX NUMBERS

- $\sqrt{-1}$ is denoted by 'i' and is pronounced as 'iota'. $i = \sqrt{-1} \implies i^2 = -1$, $i^3 = -i$, $i^4 = 1$.
- If a, b \in R and i = $\sqrt{-1}$ then a + ib is called a complex number. The complex number a + ib is also denoted by the ordered pair (a, b)
- If z = a + ib is a complex number, then:
 - (i) a is called the real part of z and we write Re(z) = a.
 - (ii) b is called the imaginary part of z and we write Im(z) = b
- Two complex numbers z_1 and z_2 are said to be equal complex numbers if Re (z_1) = Re (z_2) and Im (z_1) = Im (z_2) .
- If z = x + iy is a non zero complex number, then 1/z is called the multiplicative inverse of z.
- If x + iy is a complex number, then the complex number x iy is called the conjugate of the complex number x + iy and we write x + iy = x iy.
- Algebra of Complex Numbers
 - (i) **Addition**: (a + ib) + (c + id) = (a + c) + i(b + d)
 - (ii) Subtraction:

$$(a + ib) - (c + id) = (a - c) + i(b - d)$$

(iii) Multiplication:

$$(a + ib) + (c + id) = (ac - bd) + i(ab + bc)$$

(iv) Division by a non-zero complex number :

$$\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}, (c+id) \neq 0$$

- **Properties**: If z_1 , z_2 are complex numbers, then
 - (i) $(\overline{z}_1) = z_1$
 - (ii) $z + \overline{z} = 2 \operatorname{Re}(z)$
 - (iii) $z \overline{z} = 2i \text{ Im } (z)$
 - (iv) $z = \overline{z}$ iff z is purely real
 - (v) $z = \overline{z}$ iff z is purely imaginary
 - (vi) $z_1 + z_2 = \overline{z}_1 + \overline{z}_2$
 - (vii) $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$
 - (viii) $\overline{z_1.z_2} = \overline{z}_1.\overline{z}_2$

(ix)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$
 provided $z_2 \neq 0$

• If x + iy is a complex number, then the non-negative ral number $\sqrt{x^2 + y^2}$ is called the modulus of the complex number x + iy and write

$$|x + iy| = \sqrt{x^2 + y^2}$$

Properties: If z_1 , z_2 are complex numbers, then

- (i) $|z_1| = 0$ iff $z_1 = 0$
- (ii) $|z_1| = |\overline{z}_1| = |-z_1|$
- $(iii) |z_1| \le \text{Re}(z_1) \le |z_1|$
- $(iv) |z_1| \le Im(z_1) \le |z_1|$
- $(v) | z_1 \overline{z}_1 | = | z_1 |^2$
- (vi) $|z_1 + z_2| \le |z_1| + |z_2|$
- (vii) $|z_1 z_2| \ge |z_1| |z_2|$
- (viii) $|z_1 z_2| = |z_1| |z_2|$

(ix)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, provided $z_2 \neq 0$

$$(x) |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \overline{z}_2)$$

(xi)
$$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2 \operatorname{Re}(z_1 \overline{z}_2)$$

(xi)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 [|z_1|^2 + |z_2|^2].$$

- De Moivre's Theorem
 - (i) If n is any integer (positive or negative), then $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
 - (ii) If n is a rational number, then the value or one of the values of $(\cos \theta + i \sin \theta)^n$ is $\cos n\theta + i \sin n\theta$
- Euler's Formula

$$e^{i\theta} = \cos \theta + i \sin \theta$$
 and $e^{-i\theta} = \cos \theta - i \sin \theta$

Square root of complex number
Square root of z = a + ib are given by

$$\pm \left| \sqrt{\left(\frac{\mid z \mid + a}{2} \right)} + i \sqrt{\left(\frac{\mid z \mid - a}{2} \right)} \right| \text{ for } b > 0 \text{ and }$$

$$\pm \left\lceil \sqrt{\left(\frac{\mid z\mid +a}{2}\right)} - i\sqrt{\left(\frac{\mid z\mid -a}{2}\right)} \right\rceil \text{ for } b < 0.$$

- If $\omega = \frac{-1 + i\sqrt{3}}{2}$, then the cube roots of unity are 1, ω and ω^2 . We have:
 - (i) $1 + \omega + \omega^2 = 0$ (ii) $\omega^3 = 1$
- Let z = x + iy be any complex number.

Let $z = r (\cos \theta + i \sin \theta)$ where r > 0.

 \therefore x = r cos θ and y = r sin θ

$$\therefore x^2 + y^2 = r^2$$

$$\Rightarrow \qquad r = \sqrt{x^2 + y^2} \qquad (\because r > 0)$$

$$\therefore \cos \theta = \frac{x}{\sqrt{x^2 + y^2}} \text{ and } \sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$$

The value of θ is found by solving these equations. θ is called the argument (or amplitude) of z.

If $-p \le \theta \le \pi$, then θ is called the principal argument of z.

• Identification of θ –

X	y	arg(z)	Interval of θ
+	+	θ	$\left(0<\theta<\frac{\pi}{2}\right)$
+	-	-θ	$\left(\frac{-\pi}{2} < \theta < 0\right)$
_	+	$(\pi - \theta)$	$\left(\frac{\pi}{2} < \theta < \pi\right)$
_	-	$-(\pi-\theta)$	$\left(-\pi < \theta < \frac{-\pi}{2}\right)$

- If z_1 and z_2 are two complex numbers then
 - (i) $|z_1 z_2|$ is the distance between the points with affixes z_1 and z_2 .
 - (ii) $\frac{mz_2 + nz_1}{m+n}$ is the affix of the point dividing the

line joining the points with affixes z_1 and z_2 in the ratio m: n internally.

(iii) $\frac{mz_2 - nz_1}{m - n}$ is the affix of the point dividing the

line joining the points with affixes z_1 and z_2 in the ratio m: n externally where $m \neq n$.

- (iv) If z_1 , z_2 , z_3 are the affixes of the vertices of a triangle then the affix of its centroid is $\frac{z_1 + z_2 + z_3}{3}$.
- (v) $z = tz_1 + (1 t)z_2$ is the equation of the line joining points with affixes z_1 and z_2 . Here 't' is a parameter.

(vi)
$$\frac{z-z_1}{z_2-z_1} = \frac{\overline{z}-\overline{z}_1}{\overline{z}_2-\overline{z}_1}$$
 is the equation of the line

joining points with affixes z_1 and z_2 .

• Three points with affixes z_1 , z_2 , z_3 are collinear if

$$\begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0.$$

- The general equation of a straight line is $\overline{a}z + a\overline{z} + b = 0$, where b is any real number.
- (i) $|z z_1| < r$ represents the circle with centre z_1 and radius r.
 - (ii) $|z z_1| \le r$ represents the interior of the circle with centre z_1 and radius r.
- $\left| \frac{z z_1}{z z_1} \right|$ = k represents a circle line which is the

perpendicular bisector of the line segment joining points with affixes z_1 and z_2 .

- $(z z_1) (\overline{z} \overline{z}_2) + (\overline{z} \overline{z}_1) + (z z_2) = 0$ represents the circle with line joining points with affixes z_1 and z_2 as a diameter.
- $|z-z_1|+|z-z_2|=2k$, $k \in \mathbb{R}^+$ represents the ellipse with foci at points with affixes z_1 and z_2 .
- If z_1 , z_2 , z_3 be the affixes of the points A, B, C respectively, then the angle between AB and AC is given by $\arg\left(\frac{z_3-z_1}{z_2-z_1}\right)$.
- If z_1 , z_2 , z_3 , z_4 are the affixes of the points A, B, C, D respectively, then the angle between AB and CD is given by arg $\left(\frac{z_2 z_1}{z_4 z_3}\right)$.
- nth roots of a complex number

Let $z = r (\cos \theta + i \sin \theta)$, r > 0 be any complex number. nth root o $z = z^{1/n}$

$$=r^{1/n}\left(\cos\frac{2k\pi+\theta}{n}+i\sin\frac{2k\pi+\theta}{n}\right),$$

where $k = 0, 1, 2, \dots, n - 1$.

There are n distinct values and sum of all these values is 0.

Logarithm of a complex number

Let $z = re^{i\theta}$ be any complex number.

Then
$$\log z = \log r e^{i\theta} = \log r + \log e^{i\theta}$$

= $\log r + i\theta \log e = \log r + i\theta$.

$$\therefore \log z = \log |z| + i \operatorname{amp}(z).$$